Formation/Cours

Logo UCL monochrome

Analyse de base

Etablissement : ECOLE DU NUMERIQUE

Langue : Français

Période : S1

Acquérir les bases en analyse à travers l’étude des limites, de la continuité et de la dérivabilité.

1. Les généralités sur les fonctions numériques

a. Définitions

· Fonction numérique

· Egalités de deux fonctions

· Périodicité

· Parité

b. Applications majorées, minorées, bornées.

· Définitions

2. Limites

a. Définitions

· Limite finie

· Limite infinie

· Limite à droite, limite à gauche

b. Fonction monotone

· Définition et propriétés

c. Ordre et limite

· Théorème du gendarme

· Passage à la limite dans les inégalités

d. Opérations sur les limites


3. Continuité

a. Définition d’une fonction continue

· Continuité

· Continuité à droite et à gauche

b. Opérations algébriques sur les fonctions continues


c. Fonctions continues sur un intervalle

· Théorème des valeurs intermédiaires

4. Fonctions dérivables

a. Généralité

· Définition

· Interprétation géométrique

b. Opération sur les dérivées


5. Fonctions réciproques

a. Fonctions trigonométriques réciproques

· Arcsinus, Arccosinus, Arctangente

6. Théorèmes

a. Théorème de Rolle

b. Théorème des accroissements finis

c. Dérivées successives