Fiche détaillée d'un cours


 


Voir la fiche établissement

SOCIAL NETWORK ANALYSIS

2017-2018

IESEG School of Management ( IÉSEG )

Code Cours :

1718-IÉSEG-MBD1S2-QMS-MBDCI02UE

QUANTITATIVE METHODS


Niveau Année de formation Période Langue d'enseignement 
MSc in Big Data Analytics for Business1S2English
Professeur(s) responsable(s)S.NASINI
Intervenant(s)Stefano NASINI


Pré requis

This is a mathematically and computationally oriented course, where students are expected to have previously completed basic courses in Differential and Integral Calculus, Linear Algebra, and Computer Programming.

Objectifs du cours

At the end of the course, the student should be able to:
• Define and model network structures
• Manipulate network data using specialized softwares
• Use different modeling strategies and algorithmic methods for network analysis
• Build and analyze a company's social network using available company data

Contenu du cours

This is a graduate course in Social Network Analysis, which is designed to enable students to correctly manipulate network data, and to design statistical models for this class of data. The first part of the course focuses on Graph Theory, Network Data Structures, and Network Data Manipulation. The second part of the course deals with the classical network analysis toolbox: Centrality, Transitivity, Community Detection and Blockmodeling. The third part of the course focuses on Random Graphs and provides students with a collection of computational tools to correctly solve the designed models. The course is based on the use of several computational methods, which are currently implemented in R packages.


Modalités d'enseignement

Organisation du cours

TypeNombre d'heuresRemarques
Face to face
lecture16,00  
Interactive class8,00  
Independent study
Estimated personal workload27,00  
Group Project8,00   Students are assigned to small groups
Independent work
Reference manual 's readings8,00   From the list of recomended reading
E-Learning8,00  
Charge de travail globale de l'étudiant75,00  

Méthodes pédagogiques

  • E-learning
  • Research
  • Coaching


Évaluation

The students evaluation is based on an individual assignment and a group project.

Type de ContrôleDuréeNombrePondération
Continuous assessment
Participation0,00010,00
Others
Group Project8,00140,00
Individual Project8,00150,00
TOTAL     100,00

Bibliographie

  • U. Brandes and T. Erlebach, NETWORK ANALYSIS: METHODOLOGICAL FUNDATION -




 
* Informations non contractuelles et pouvant être soumises à modification
 
 
Vidéo : Un campus à vivre
Notre chaîne Youtube