Fiche détaillée d'un cours


 


Voir la fiche établissement

SOCIAL NETWORK ANALYSIS

2016-2017

IESEG School of Management ( IÉSEG )

Code Cours :

1617-IÉSEG-MBD1S2-QMS-MBDCI02UE

QUANTITATIVE METHODS


Niveau Année de formation Période Langue d'enseignement 
MSc in Big Data Analytics for Business1S2English
Professeur(s) responsable(s)S.NASINI
Intervenant(s)S.NASINI


Pré requis

This is a mathematically and computationally oriented course, where students are expected to have previously completed basic courses in Differential and Integral Calculus, Linear Algebra, and Computer Programming

Objectifs du cours

At the end of the course, the student should be able to:
1) Define and model network structures;
2) Manipulate network data using specialized softwares;
3) Use different modeling strategies and algorithmic methods for network analysis.

Contenu du cours

This is a graduate course in Social Network Analysis, which is designed to enable students to correctly manipulate network data, and to design statistical models for this class of data. The first part of the course focuses on Graph Theory, network data structures, and network data manipulation. The second part of the course deals with the classical network analysis toolbox: Centrality, Transitivity, Community Detection and Blockmodeling. The third part of the course focuses on Random Graphs and provides students with a collection of computational tools to correctly solve the designed models. The course is based on the use of several computational methods, which are currently implemented in R packages.


Modalités d'enseignement

Organisation du cours

TypeNombre d'heuresRemarques
Face to face
lecture20,00  
Interactive class12,00  
Independent study
Estimated personal workload18,00  
Group Project10,00  
Individual Project10,00  
Independent work
Reference manual 's readings20,00  
E-Learning10,00  
Charge de travail globale de l'étudiant100,00  

Méthodes pédagogiques

  • Presentation
  • E-learning
  • Project work
  • Interactive class
  • Coaching


Évaluation

The students evaluation is based on a group project and an individual project.

Type de ContrôleDuréeNombrePondération
Others
Group Project10,00130,00
Individual Project10,00160,00
presentation
statement0,50110,00
TOTAL     100,00

Bibliographie

  • U. Brandes and T. Erlebach, NETWORK ANALYSIS: METHODOLOGICAL FUNDATION -




 
* Informations non contractuelles et pouvant être soumises à modification
 
 
Vidéo : Un campus à vivre
Notre chaîne Youtube